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2 J. R. GILBERT AND X. S. LI AND E. G. NG AND B. W. PEYTONfa
torization is A = Q � RO � ;where Q is an m � m orthogonal matrix and R is an n � n upper triangularmatrix. The fa
torization is usually 
omputed by Householder transformations,and Q is then represented 
ompa
tly by the \Householder matrix", whi
h is them � n lower trapezoidal matrix H whose 
olumns are the Householder ve
tors.Se
ond we 
onsider the triangular fa
torization with partial pivoting PA = LU ,1where L is unit lower triangular, U is upper triangular, and P is a permuationmatrix des
ribing row inter
hanges. We may write this fa
torization in the formA = P1L1P2L2 � � �Pn�1Ln�1U;where Pi is a permutation that just transposes row i and a higher-numberedrow, and Li is a Gauss transform (a unit lower triangular matrix with nonzerosonly in 
olumn i). Column i of L has the same nonzero values as 
olumn i ofLi, but in a di�erent order. We write L̂ to denote the lower triangular matrixwhose ith 
olumn is that of Li. Thus L and L̂ have the same nonzero values,but in di�erent orders within ea
h 
olumn.1.1 Summary of resultsOur goal in this paper is to 
ompute the number of nonzeros in ea
h row andea
h 
olumn of the matri
es H, R, L̂, and U , given only the nonzero stru
tureof A. The 
olumn 
ounts for L are the same as those for L̂. We also des
ribe amethod (whi
h has been alluded to but not published) to 
ompute the \
olumnelimination tree" of A, as de�ned below.Our algorithms run in time almost linear in the number of nonzeros in A. Thusthey may be used as a fast way to predi
t and allo
ate the storage ne
essary forthe QR or LU fa
torization. In parti
ular, our work was motivated by the LUfa
torization 
ode SuperLU [3, 4, 18℄. Both the sequential and parallel versions ofSuperLU use the 
olumn elimination tree to 
luster similarly-stru
tured 
olumnsof L for eÆ
ien
y; the shared-memory parallel version (
alled SuperLU MT) alsouses the tree for s
heduling and the predi
ted 
olumn 
ounts to allo
ate workingstorage.The row and 
olumn 
ounts for L̂ and U 
annot be predi
ted exa
tly fromthe nonzero stru
ture of A, be
ause the row inter
hanges during fa
torizationdepend on the numeri
al values. However, regardless of row inter
hanges, thestru
tures of L̂ and U are subsets of the stru
tures of H and R respe
tively [12,13℄. Therefore the rest of this paper fo
uses on 
omputing 
ounts for H and R.We shall make three assumptions about A.1. Every entry on the main diagonal of A is nonzero. (Every matrix of full
olumn rank has a row permutation that puts nonzeros on its main diag-onal [5, 6, 8℄.)1In this fa
torization the matrix A 
an also be re
tangular. Here we 
onsider only squarematri
es.



ROW AND COLUMN COUNTS FOR SPARSE QR AND LU 32. A has the strong Hall property (that is, its rows and 
olumns 
annot bepermuted to yield a nontrivial blo
k upper triangular form [2, 25℄).3. No 
oin
idental numeri
al 
an
ellation takes pla
e during any arithmeti
on A. (Formally, this is guaranteed in exa
t arithmeti
 if the nonzeros ofA are algebrai
ally independent.)The referen
es [2, 13, 15, 17, 24℄ 
ontain more 
omplete dis
ussions of theseassumptions and their 
onsequen
es. These three assumptions imply that (1)the model we use in this paper for the nonzero stru
ture of H and R is exa
t,not merely an upper bound, and (2) the nonzero stru
tures of H and R are thetightest upper bounds on those of L̂ and U that are possible without knowingany of the values of the nonzeros of A. Therefore, under these assumptions, ouralgorithms 
ompute the exa
t row and 
olumn 
ounts for H and R, and thetightest possible bounds for L̂ and U .If A does not satisfy these three assumptions then our algorithms 
omputeupper bounds on all the row and 
olumn 
ounts.1.2 Relationship to the symmetri
 problemThe normal equations ATAx = AT b allow Cholesky fa
torization to repla
enonsymmetri
 LU (for Ax = b) or QR (for full-rank least squares), at least intheory. The latter fa
torizations are usually preferable for numeri
al reasons.When using LU or QR fa
torization in the sparse 
ase, however, there are manysituations where the nonzero stru
ture of the normal equations matrix ATA andits Cholesky fa
tor 
ontain useful information about the 
ombinatorial stru
tureof A and its fa
tors.A drawba
k to using the stru
ture of ATA is that it may be expensive to
ompute and store. If A is sparse, ATA is likely to be mu
h less sparse. Thusone tries to represent ATA impli
itly rather than expli
itly. We may think ofthe stru
ture of ATA as an undire
ted graph with a vertex for ea
h 
olumn of Aand a 
lique (a full submatrix) for ea
h row of A. One 
ould then represent ATAimpli
itly by storing only A, and treating ea
h row of A (with k nonzeros, say)as a 
lique of k2 nonzeros in ATA. This representation would save spa
e but beexpensive in time. To save time as well, we noti
e that not all the edges of su
ha 
lique are ne
essary to 
ompute the row and 
olumn 
ounts and the 
olumnelimination tree. Thus we do our 
omputations on an intermediate graph thathas only k � 1 edges, instead of k2, for a row of A with k nonzeros.We use two di�erent intermediate graphs in our algorithms. The 
olumnelimination tree algorithm in Se
tion 2 substitutes for ATA a graph that hasa path instead of a 
lique for ea
h row of A. Unlike ATA, that graph is nolarger than A, but it has the same elimination tree as ATA. In Se
tion 3.3,we 
ompute row and 
olumn 
ounts for R by following our earlier algorithm to
ompute 
ounts for the Cholesky fa
tor [16℄ (on this 
olumn elimination tree),but substituting for ATA a graph that has a star (a subgraph whose lowest-numbered vertex has an edge to every other vertex in the subgraph) for ea
hrow of A. That graph is no larger than A, but it has the same symboli
 Cholesky
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tor as ATA. In Se
tion 3.2, we 
ompute row and 
olumn 
ounts for H usingA and the 
olumn elimination tree, following our earlier 
hara
terization [24℄ ofthe stru
ture of H.1.3 Notation and detailsThroughout this paper, we assume some familiarity with elimination trees [21℄,supernodes [1, 22℄, and the use of graphs in sparse matrix 
omputation [7, 9, 11℄.The stru
ture of the m� n matrix A, denoted by Stru
t[A℄, is de�ned to beStru
t[A℄ := f(i; j) j Aij 6= 0g:We use jAj to denote the number of nonzero entries in A; that is, jAj =j Stru
t[A℄j. Then Stru
t[ATA℄ is the set of lo
ations of nonzero entries of ATA(under our assumption of no exa
t 
an
ellation). We writeStru
t[Ai�℄ := fj j Aij 6= 0gand Stru
t[A�j℄ := fi j Aij 6= 0gto denote the stru
tures of row i and 
olumn j of matrix A.The graph of ATA, denoted by G(ATA), has the vertex set f1; 2; : : : ; ng. Fori 6= j, there is an edge (i; j) in G(ATA) if and only if the (i; j)-element of ATAis nonzero. Note that the (i; j)-element of ATA is nonzero if and only if Aki andAkj are both nonzero for some k. Consequently, Stru
t[Ak�℄ forms a 
lique inG(ATA).The elimination tree of a symmetri
 positive de�nite matrix 
hara
terizesdependen
ies between 
olumns in the Cholesky fa
torization of the matrix.S
hreiber [26℄ de�ned this tree; Liu [20, 21℄ surveyed its appli
ations in sparsefa
torization. The 
olumn elimination tree of A is the elimination tree of ATA,whi
h we denote T (ATA). (Stri
tly speaking, the 
olumn elimination tree of Ais de�ned as the elimination tree of a symmetri
 matrix whose (i; j) entry isnonzero whenever 
olumns i and j of A share a nonzero row. Sin
e we assumeno 
oin
idental numeri
al 
an
ellation, ATA has that nonzero stru
ture.)The verti
es of T (ATA) are the integers 1 through n, the same as those ofG(ATA). Vertex i is the parent of vertex j < i in the tree T (ATA) if the �rsto�-diagonal nonzero entry in 
olumn j of the (lower triangular) Cholesky fa
torof ATA is in row i.1.4 Outline of paperSe
tion 2 shows how to 
ompute the elimination tree T (ATA) using Stru
t[A℄as input rather than Stru
t[ATA℄. This algorithmhas time 
omplexityO(jAj�(jAj; n)),where �(�; �) is the very slowly growing inverse of A
kermann's fun
tion [27℄;thus, the algorithm is said to be \almost linear" in the size of its input. Se
-tion 3 is the heart of the paper: it shows how to 
ompute the row 
ounts and
olumn 
ounts of H and R using Stru
t[A℄ and T (ATA) as input. This algorithm
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omplexity O(jAj�(jAj; n)). Se
tion 4 presents experimental re-sults demonstrating that the algorithms introdu
ed here are mu
h faster than thestraightforward ones based on ATA. Se
tion 5 
ontains our 
on
luding remarks.2 Computing the 
olumn elimination treeIn this se
tion we des
ribe an algorithm to determine the 
olumn eliminationtree T (ATA) of A without forming ATA expli
itly. The algorithm runs in timenearly linear in the number of nonzeros in A, whi
h may be mu
h less thanthe number of nonzeros in ATA. While we believe this is the �rst publisheddes
ription, Liu [20℄ alludes to an algorithmwith this running time and Matlab'sbuilt-in fun
tion 
oletree implements su
h an algorithm [14℄. (The Matlabimplementation repla
es ea
h row of A by a star, like our QR 
ount algorithmin Se
tion 3. We expe
t a path, as we use here, to require slightly less overheadfor tree traversal in the disjoint set union algorithm, but we have not 
omparedthe path and star experimentally.)We begin by reviewing the symmetri
 algorithm (whose running time is almostlinear in the number of nonzeros in ATA), and then show how to modify it towork from A rather than ATA.2.1 Review: The symmetri
 algorithmTo 
onstru
t T (ATA) from Stru
t[ATA℄, the symmetri
 algorithm pro
essesthe rows of ATA one at a time. After pro
essing the �rst i� 1 rows of ATA, wehave built the elimination tree for the (i�1)� (i�1) leading submatrix of ATA.(This \tree" may a
tually be a forest with multiple 
onne
ted 
omponents, ea
hwith its own root.) To pro
ess row i, we pro
eed up the tree from every vertex
orresponding to an o�-diagonal nonzero entry of row i of the lower triangularpart of ATA until we rea
h a root. Then we add vertex i to the tree, as well asedges to make i the new parent of all those roots. The algorithm is summarizedin Figure 2.1. for row i 1 to n doAdd i to T (ATA);for 
olumn j 2 Stru
t[(ATA)i�℄ \ f1; 2; : : : ; i� 1g doFind root r of the 
urrent tree that 
ontains j;if r 6= i thenparent(r) i;end ifend forend forFigure 2.1: Algorithm for 
omputing the elimination tree T (ATA) fromStru
t[ATA℄.The most expensive part of the algorithm in Figure 2.1 is the tree traversals
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ien
y of the tree traversals 
an beimproved by various kinds of path 
ompression, as used in disjoint set unionalgorithms [27℄. We refer the reader to Liu [19, 21℄ for details of disjoint set unionin elimination tree algorithms. If balan
ing and path 
ompression are both usedthen the elimination tree algorithm has time 
omplexity O(jATAj�(jATAj; n)).Liu [21℄ re
ommends using path 
ompression without balan
ing; the resultingalgorithm has time 
omplexity O(jATAj logn), but is faster in pra
ti
e than thealgorithm with both balan
ing and path 
ompression.2.2 The nonsymmetri
 algorithmWe now shift our attention to how T (ATA) 
an be 
omputed from Stru
t[A℄rather than Stru
t[ATA℄.Every o�-diagonal nonzero entry in ATA, and hen
e every edge of G(ATA),
orresponds to an an
estor-des
endant pair in T (ATA) [19, 21, 26℄. In parti
ular,if (i; j) and (j; k) are two edges in G(ATA) with i < j < k, then verti
es i, j, andk must belong to the unique path joining i and k, with i being the des
endantof both j and k.For 1 � i � m, let the 
olumn indi
es of the �rst and last nonzeros in row Ai�be denoted by fi and `i, respe
tively:fi := minfj j j 2 Stru
t[Ai�℄g;`i := maxfj j j 2 Stru
t[Ai�℄g:Sin
e Stru
t[Ai�℄ is a 
lique in G(ATA), it follows from the pre
eding dis
ussionthat Stru
t[Ai�℄ must 
onsist of a subset of verti
es on the path in T (ATA) fromfi up to `i.The relationship between the row stru
tures of A and the paths in T (ATA)provides a way to avoid 
omputation of Stru
t[ATA℄ from Stru
t[A℄. The keyobservation follows. Choose j 2 Stru
t[Ai�℄ su
h that j 6= fi, and let k be theimmediate prede
essor of j in Stru
t[Ai�℄. Sin
e ea
h vertex k0 < k taken fromStru
t[Ai�℄ is a des
endant of k in T (ATA), there is no need for the eliminationtree algorithm to sear
h any su
h edge (k0; j), even though (k0; j) is a nonzeroentry in ATA. Instead it needs to examine only edges joining a vertex with itsimmediate prede
essor in a row list Stru
t[Ai�℄.We are essentially using the symmetri
 elimination tree algorithm, not on thegraph of ATA, but on a graph that has a path for every row of A. This graphhas the same elimination tree as ATA but is only as large as A. The details areshown in Figure 2.2.The ve
tor parent is the parent fun
tion of the 
olumn elimination tree al-gorithm. Array element prev 
ol(i) re
ords the prede
essor of the next vertexin Stru
t[Ai�℄ to be pro
essed. As in the elimination tree algorithm, when theroot r of a subtree 
ontaining k is found, path 
ompression 
an be employed toredu
e the time required to perform tree traversals. Thus, the 
olumn elimina-tion tree algorithm has time 
omplexity O(jAj�(jAj; n)) if balan
ing and path
ompression are both used.
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olumn j  1 to n doparent(j) j; prev 
ol(j) 0;end forfor 
olumn j  1 to n dofor row i 2 Stru
t[A�j℄ dok  prev 
ol(i);if k 6= 0 then/* fi < j */�nd root r of the 
urrent tree that 
ontains k;if r 6= j thenparent(r) j;end ifend if/* re
ord j as prede
essor of next vertex in Stru
t[Ai�℄ */prev 
ol(i) j;end forend forFigure 2.2: Algorithm for 
omputing the 
olumn elimination tree T (ATA) fromStru
t[A℄.3 Row and 
olumn 
ounts for sparse QR fa
torizationWe begin by reviewing the eÆ
ient algorithms to 
ompute row and 
olumn
ounts for Cholesky fa
torization [16℄. Then we modify these algorithms forsparse QR fa
torization, so that they work on Stru
t[A℄ rather than Stru
t[ATA℄.Re
all that (for square A) the 
ounts for H and R are also the best possible apriori bounds on the 
ounts for the partial-pivoting fa
tors L̂ and U respe
tively.3.1 Review: Row and 
olumn 
ounts for Cholesky fa
torsThis material is 
ondensed from Gilbert, Ng, and Peyton [16℄, whi
h has amu
h more leisurely explanation of the algorithms and why they work. Here wejust des
ribe the details that will later need to be modi�ed in order to use Arather than ATA. The reader should glean two key points from this subse
tion:�rst, the Cholesky row 
ounts are derived by summing the lengths of 
ertainpaths in the elimination tree; se
ond, the Cholesky 
olumn 
ounts are derivedby summing 
ertain vertex weights in the tree. The paths and the vertex weightsare both de�ned in terms of the leaves (and possibly other verti
es) of the \rowsubtrees", and of 
ertain least 
ommon an
estors of those verti
es. The modi-�
ations for sparse QR fa
torization will 
onsist of methods for identifying the
ru
ial subtrees, leaves, and an
estors for H and R rather than for the Choleskyfa
tor, and for doing so from A rather than from ATA.In this se
tion, let B be an arbitrary sparse n� n symmetri
 positive de�nitematrix, and let LB be its (lower triangular) Cholesky fa
tor. Let T (B) be theelimination tree of B. Re
all [21℄ that the nonzeros in any row i of LB indu
e a



8 J. R. GILBERT AND X. S. LI AND E. G. NG AND B. W. PEYTON
onne
ted subgraph of T (B) 
alled the ith row subtree and written Ti(B); andthat every leaf of Ti(B) 
orresponds to a nonzero 
olumn in row i of B.Determining the Cholesky row 
ounts from T (B) is straightforward. The ithrow 
ount of LB is simply the number of verti
es in the ith row subtree Ti(B),whi
h we 
an get by 
ounting the edges in Ti(B). To get the desired running timewe must 
ount those edges in time that depends only on the number of nonzerosin row i of B, not on the size of Ti(B). The solution is as follows. Assume thatT (B) is postordered. Then (for ea
h i) the edges of Ti(B) are partitioned intodisjoint paths by the verti
es 
orresponding to the subdiagonal nonzeros in rowi of B, together with the least 
ommon an
estors of 
onse
utive pairs of su
hverti
es. Thus, the ith row 
ount 
an be obtained by 
omputing the sum ofthe lengths of these disjoint paths. This 
an be implemented in O(jBj�(jBj; n))time, whi
h is dominated by the running time of the disjoint set union algorithmused to �nd the least 
ommon an
estors [27℄.Determining the 
olumn 
ounts is more 
ompli
ated. The jth 
olumn 
ount isthe number of row subtrees that 
ontain vertex j. We 
ould simply traverse everyrow subtree, keeping a 
ount for ea
h j; but that would take time proportional tothe total size of the Cholesky fa
tor. The eÆ
ient algorithm 
ounts all the rowsubtrees 
ontaining ea
h j simultaneously in a single traversal of all of T (B),using vertex weights de�ned in terms of the same least 
ommon an
estors asabove.For ea
h pair of verti
es i and j (with 1 � i; j � n), de�ne the 
hara
teristi
fun
tion � by �i(j) = � 1 if (LB)ij 6= 0,0 otherwise.De�ne the vertex weight fun
tion w bywi(j) = �i(j) � X
hildren k of j �i(k) ;and w(j) = Xall iwi(j) :With the 
onvention that the des
endants of j in
lude j, the de�nition of wi(j)implies that�i(j) = wi(j) + X
hildren k of j �i(k) = Xdes
endants s of jwi(s) :Therefore, the jth 
olumn 
ount, denoted by 

(j), is given by

(j) = Xall i�i(j) = Xall i Xdes
endants s of jwi(s) = Xdes
endants s of jw(s):That is, the jth 
olumn 
ount is pre
isely the sum of the weights of the des
en-dants of j in T (B). If we 
an 
ompute the weights, 
omputing the 
olumn 
ountsinvolves merely a

umulating the weights from leaves to the roots in T (B).
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ult to 
ompute. Suppose that vertex j hasd 
hildren in the ith row subtree. Then by de�nitionwi(j) = �i(j) � d;and the only nonzero values of wi(j) arewi(j) =8<: �1; if j is the parent of i in T (B),1; if j is a leaf of Ti(B),1� d; if j belongs to Ti(B) and has d > 1 
hildren in Ti(B).The verti
es j for whi
h wi(j) 6= 0 are easy to identify. By de�nition, everyleaf of Ti(B) 
orresponds to a nonzero entry in row i of B. Every vertex inTi(B) with more than one 
hild in Ti(B) is the least 
ommon an
estor of a pairof 
onse
utive nonzero entries in row i of B, and hen
e is one of the verti
esidenti�ed in the row 
ount algorithm above.In summary, we 
ompute the vertex weights by pro
essing the row subtreesTi(B) one by one, and adding ea
h nonzero 
ontribution wi(j) from the ith rowsubtree to the appropriate w(j). After 
omputing all the w(j)'s, we obtain the
olumn 
ounts by traversing T (B) from its leaves to its roots.Again, we refer the reader to the paper [16℄ for the details of the row and
olumn 
ounts algorithm for Cholesky fa
tors.3.2 Row and 
olumn 
ounts of the Householder matrixComputing row and 
olumn 
ounts of the m � n Householder matrix H issimilar to 
omputing Cholesky 
ounts, be
ause the stru
ture of H has a tree-based 
hara
terization similar to (a
tually, simpler than) that of a Choleskyfa
tor. To see why, we need the following result, whi
h is due to George, Liu,and Ng.Theorem 3.1 (Row Stru
ture of H). [12℄ Let T = T (ATA) be the 
olumnelimination tree of A. Let fi denote the 
olumn index of the �rst nonzero entryin row Ai�. Then Stru
t[Hi�℄ 
onsists of all the verti
es on the path in T fromfi to either i or the root of T , whi
hever is smaller. (Vertex i is an an
estor offi in T be
ause Aii 6= 0. If T is not 
onne
ted, the root in question is that of the
omponent 
ontaining fi.)The paths in this theorem play the role of the row subtrees in the Cholesky
ount algorithms. Sin
e now ea
h \subtree" 
onsists of a single path joining ades
endant to an an
estor, the algorithms are simpler. Ea
h row 
ount is justthe length of the 
orresponding path in verti
es, whi
h is one more than thedi�eren
e between the levels of its endpoints. Thus all the row 
ounts 
an be
omputed in O(jAj) time from T and A.The 
olumn 
ounts for H 
an also be 
omputed just as in the Cholesky 
asedes
ribed above, but the weights are simpler be
ause ea
h row subtree (path)has only one leaf. Using the notation in Se
tion 3.1, wi(j) is nonzero if and onlyif either j is the parent of the last vertex of the path for row i of H (i.e., theroot of the ith row subtree), in whi
h 
ase wi(j) = �1; or j is the leaf of thepath for row i of H (i.e., j = fi), in whi
h 
ase wi(j) = 1.
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omplete 
olumn-oriented algorithm to 
ompute the row and 
olumn
ounts of the Householder matrix H (denoted by r
H and 

H ) appears in Fig-ure 3.1. In this algorithm, the subtree roots r(i) 
an be 
omputed as partof the elimination tree algorithm (Se
tion 2). Computing all the vertex levelslevel(j) (distan
es to the root) takes O(n) time. The fi's 
an be determinedfrom Stru
t[A℄ in O(jAj) time. The set �rst[j℄ 
ontains ea
h row whose �rstnonzero entry is in 
olumn j; all those sets 
an be 
onstru
ted from Stru
t[A℄ inO(jAj) time. Thus the overall running time of the algorithm is O(jAj).Sort the 
olumns of A by a postorder of T (ATA);Compute level(j) as the distan
e from j to the root of j's subtree, for 1 � j � n;Compute fi as the 
olumn index of the �rst nonzero in row Ai�, for 1 � i �m;Compute �rst[j℄ = fi j fi = jg, for 1 � j � n;Let r(i) be the smaller of i or the root of the subtree 
ontaining fi;w(j) 0, for 1 � j � n;for 
olumn j  1 to n dofor i 2 �rst[j℄ dor
H(i) 1 + level(j)� level(r(i));w(j) w(j) + 1; /* for the leaf */if r(i) is not the root of a subtree thenw(parent(r(i))) w(parent(r(i)))� 1; /* for the parent */end ifend forend for

H(j) w(j), for 1 � j � n;for j  1 to n � 1 doif j is not the root of a subtree then

H(parent(j)) 

H(parent(j)) + 

H(j);end ifend forFigure 3.1: The 
olumn-oriented algorithm to 
ompute row and 
olumn 
ountsof the Householder matrix.3.3 Supernodal stru
ture of H and LA supernode of a lower triangular fa
tor of a matrix is a blo
k of 
onse
utive
olumns that have identi
al nonzero stru
tures, ex
ept that the square subblo
kon the diagonal is a full triangle. Many fa
torization algorithms gain eÆ
ien
yby using high-level BLAS|that is, optimized dense matrix kernels|to operateon supernodes as dense blo
ks [1, 3℄.We 
an determine the supernodal stru
ture of the Householder matrix H,whi
h gives a useful bound on the supernodal stru
ture of the partial pivotingfa
tor L, during the row and 
olumn 
ount algorithm in Figure 3.1. Spe
i�
ally,we identify the fundamental supernodes of H. The verti
es 
orresponding to
olumns of a supernode form a path in the 
olumn elimination tree T (ATA). A



ROW AND COLUMN COUNTS FOR SPARSE QR AND LU 11fundamental supernode is a supernode that is maximal subje
t to the propertythat every vertex on that path, with the possible ex
eption of the �rst one, hasexa
tly one 
hild in the tree. See Ng and Peyton [23℄ for more on fundamentalsupernodes.The following theorem, whi
h is due to Li [18℄, 
hara
terizes the fundamentalsupernodes of H in terms of the 
olumn elimination tree.Theorem 3.2 (Supernodal stru
ture of H). [18℄ Let T = T (ATA) bethe 
olumn elimination tree of A, and assume that T is postordered. Let H bethe Householder matrix. Vertex j is the �rst vertex in a fundamental supernodeof H if and only if vertex j has two or more 
hildren in T , or j is the 
olumnindex of the �rst nonzero entry in some row of A.Proof. If vertex j has two or more 
hildren in T , then it is the �rst vertex ofa fundamental supernode by de�nition. Suppose, then, that vertex j has onlyone 
hild. Sin
e T is postordered, the 
hild is j � 1.\if" part: Let Aij be the �rst nonzero entry in row i of A. Theorem 3.1implies that j 2 Stru
t[Hi�℄ and j � 1 62 Stru
t[Hi�℄. Therefore Stru
t[H�j℄ 6�Stru
t[H�;j�1℄; thus 
olumn j must begin a new supernode.\only if" part: Suppose j is the �rst 
olumn of its fundamental supernode.Then Stru
t[H�j℄ 6� Stru
t[H�;j�1℄. Hen
e there exists a row i su
h that j� 1 62Stru
t[Hi�℄ but j 2 Stru
t[Hi�℄. If there is a k � j � 1 su
h that Aik 6= 0, thenj � 1 2 Stru
t[Hi�℄, be
ause j � 1 is on the path in T from k to j 2 Stru
t[Hi�℄,
ontrary to our assumption that j � 1 62 Stru
t[Hi�℄. Therefore we must haveAik 6= 0 for all k � j � 1. Sin
e j 2 Stru
t[Hi�℄ and moreover Aik 6= 0 fork � j�1, it follows by Theorem 3.1 that Aij 6= 0; hen
e, Aij is the �rst nonzeroof row i of A.It is straightforward to 
he
k the 
onditions of this theorem during the House-holder 
ounts algorithm, thus determining the supernodal partition of H.Pre
omputing the fundamental supernodes of H 
an be useful in implement-ing partial pivoting on some parallel ma
hines. Note that every fundamentalsupernode of L is 
ontained in a fundamental supernode of H. This is be
ausethe �rst vertex of a fundamental supernode of H is ne
essarily the �rst nonzero
olumn index in some row of A (as in the proof of Theorem 3.2), and thereforewill also be the �rst nonzero 
olumn index in some row of L.In our shared-memory parallel partial pivoting 
ode SuperLU MT [4, 18℄, itis useful to preallo
ate storage for a supernode of L before 
omputing it. Thisis be
ause ea
h supernode may be divided into panels whose 
omputation is as-signed to di�erent pro
essors. If panels are stored in the order they are 
omputedthen panels from supernodes in di�erent subtrees of T may end up intermingled,preventing the use of dense matrix kernels on entire supernodes. Instead, weallo
ate storage for a supernode of H at a time, and use that storage for all theen
losed supernodes of L. It is then impossible for a panel of one supernode tobe stored between two panels of another supernode. (The SuperLU MT 
odealso re�nes this upper bound on a supernode's storage dynami
ally during theLU fa
torization [18℄.)
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olumn 
ounts of the upper triangular fa
torWe turn our attention to the upper triangular fa
tor R in the QR fa
torizationof A. This R is the transpose of the Cholesky fa
tor of ATA [10℄. Thus we 
ouldsimply take B = ATA in the Cholesky 
ount algorithm (Se
tion 3.1). The onlydiÆ
ulty is that ATA may have many more nonzeros than A, so the runningtime might be far from linear in jAj.Therefore, instead of taking B = ATA, we 
hoose a B that has at most jAjnonzeros but whose symboli
 Cholesky fa
tor has the same stru
ture as theCholesky fa
tor of ATA. Spe
i�
ally, for ea
h row of A, we in
lude in the graphof B a star, with edges from the �rst nonzero 
olumn in that row to all the others.Using a 
lique instead of a star for ea
h row of A would yield the stru
ture ofATA. However, the symboli
 Cholesky fa
tors of B and of ATA are the same,be
ause elimination of the �rst vertex in a row star of B 
auses �ll among allthe other verti
es in that star. (A path, as we used in Se
tion 2, would not ingeneral lead to the same symboli
 Cholesky fa
tor.)Here are the details of the 
omputation. We assume that the 
olumn elim-ination tree T (B) = T (ATA) has been formed by the algorithm in Se
tion 2,and that its verti
es have been postordered. We do not literally form B; wejust modify the Cholesky 
ounts algorithm [16, Fig. 3℄ to extra
t the ne
essaryinformation from A. In parti
ular, that algorithm must identify in T (ATA) theleaves of the row subtrees Tj(ATA) and their least 
ommon an
estors.Consider the row subtree Tj(ATA). Any leaf k 6= j of that subtree has k < jand is adja
ent to j in G(ATA). Sin
e G(ATA) is the union of one 
lique for ea
hrow of A, there must be some row i of A in whi
h both Aik and Aij are nonzero.In fa
t, Aik is the �rst nonzero in row i of A; otherwise, the �rst nonzero wouldbe a proper des
endant of k in Tj(ATA) and k would not be a leaf of the subtree.As above, write fi as the 
olumn index of the �rst nonzero in row i of A. We
on
lude that every leaf of a row subtree is an fi. (Not every fi need be a leafof a row subtree.) Consequently, for ea
h row i of A, it suÆ
es for the Cholesky
ount algorithm to examine only the subsetf(fi; j) j j 2 Stru
t[Ai�℄ and j > figof the edges of ATA|that is, the edges of B. There are fewer than jAj su
hedges, so the running time is O(jAj�(jAj; n)) as desired.Figure 3.2 gives the detailed algorithm to �nd r
R and 

R, the row and 
olumn
ounts for R. The algorithm is 
olumn-oriented, and pro
esses the �rst-vertexsets �rst[j℄ = fi j fi = jg in postorder. (These 
orrespond to the 
enters of thestars in B.) For ea
h �rst-vertex set �rst [j℄, the algorithm needs to examinethe higher-numbered adja
ent verti
es in G(ATA), that is, u 2 Stru
t[Ai�℄ withu > fi, for all i su
h that fi = j. We therefore de�ne the higher adja
en
y sethadj f [j℄ for the �rst vertex set �rst[j℄ as follows:hadj f [j℄ := [i2�rst[j℄fu j u 2 Stru
t[Ai�℄; u > jg :
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es in stars of B (or 
liques of ATA) whose 
enter (orlowest-numbered vertex) is j.The algorithm in Figure 3.2 in
ludes one further optimization, as used byGilbert, Ng, and Peyton [16℄. The one-line testif fst des
(j) > prev nbr(u) thendis
ards some edges that do not a�e
t the result, leaving only a minimal graph
alled the skeleton graph [19℄. The resulting algorithm examines only those edges(fi; j) su
h that fi is a leaf in the row subtree of j. If e� is the number of edgesin the skeleton graph (whi
h is at most jAj and often mu
h smaller), the overalltime 
omplexity is O(jAj+ e� �(e�; n)).3.5 Combined algorithmSin
e the algorithms for H (Figure 3.1) and R (Figure 3.2) both pro
essStru
t[A℄ 
olumnwise, and they use several 
ommondata stru
tures, it is straight-forward to 
ombine the two algorithms into a single-pass algorithm that 
om-putes the row and 
olumn 
ounts for both H and R. The timings we report inthe next se
tion are for this 
ombined algorithm.Our implementation theoreti
ally has time 
omplexityO(jAj+e� logn) ratherthan O(jAj + e� �(e�; n)), be
ause we implement the disjoint set union algo-rithms without balan
ing. Gilbert, Ng, and Peyton [16℄ found this variant to bethe fastest in pra
ti
e for the Cholesky 
ount algorithms, just as Liu [21℄ did forsymmetri
 elimination tree algorithms.4 Numeri
al resultsIn this se
tion, we present the performan
e of the new algorithms on a vari-ety of square and re
tangular matri
es, as des
ribed in Table 4.1. The squarematri
es are available from the Matrix Market2 or the University of Florida.3The �rst three term-do
ument matri
es are available from the Cornell SMARTsystem.4 Hongyuan Zha provided matrix Newsgroup; we removed its denserows in our test. Yin Zhang provided the three matri
es from optimization. Weperformed our experiments on an IBM RS/6000-590 with a CPU 
lo
k rate of66.5 MHz. We used the AIX xl
 
ompiler with -O3 optimization.Table 4.2 reports results for the square matri
es. We show the time to 
omputethe 
olumn elimination tree and the QR 
ounts using the algorithms in Se
tions2 and 3. For 
omparison, we show the time to form Stru
t[ATA℄ expli
itly, andto 
ompute the elimination tree and Cholesky 
ounts from that stru
ture. Wealso show the time for LU fa
torization with partial pivoting as implementedin SuperLU [3℄. The 
olumns of A are preordered using minimum degree onStru
t[ATA℄ before the fa
torization.The algorithm from Se
tion 2 to 
ompute the 
olumn elimination tree T (ATA)from Stru
t[A℄ is usually faster than the older algorithm to 
ompute the tree2http://math.nist.gov/MatrixMarket/3http://www.
is.u
.edu/�davis/sparse/4ftp.
s.
ornell.edu:pub/smart/
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t[ATA℄. When we in
lude the time to form Stru
t[ATA℄ in the latter,we �nd that the newer algorithm (
omputing T (ATA) dire
tly from Stru
t[A℄)is mu
h faster than the older one (
omputing T (ATA) from Stru
t[A℄ by way ofStru
t[ATA℄); the speedups range from 1.1 to 266 fold, with an average of 34.This shows that forming and manipulating Stru
t[ATA℄ is often very expensive
ompared to the alternatives.The runtime of the QR 
ount algorithm is 
omparable to that of the 
olumnelimination tree algorithm, as we might expe
t sin
e both are dominated bydisjoint set union operations. In any setting where the 
olumn elimination treeis desired, 
omputing row and 
olumn 
ounts adds little extra time.The last two 
olumns of the table show that the row and 
olumn 
ount al-gorithm is mu
h faster than the numeri
al LU fa
torization algorithm. For thelargest matri
es, the QR 
ount algorithm takes less than 1% of the LU fa
toriza-tion time. This demonstrates that if stati
 data stru
tures are desirable in LUfa
torization (e.g., on shared-memory parallel ma
hines), the storage allo
ationphase based on the QR 
ounts is very fast.Table 4.3 reports runtimes for the re
tangular matri
es. Again, the new 
ol-umn elimination tree algorithm is mu
h faster than the one that forms ATA,with speedups ranging from 3 to 87 fold, and the QR row and 
olumn 
ountalgorithm is 
omparable in 
ost to the 
olumn elimination tree algorithm.5 Con
lusionIn this paper we have presented new fast algorithms to 
ompute parametersof the nonzero stru
ture of the QR fa
torization of a sparse matrix, in
ludingthe row and 
olumn 
ounts of the Householder matrix and the row and 
olumn
ounts of the upper triangular fa
tor. The new algorithms are modi�
ationsof an earlier algorithm for 
omputing row and 
olumn 
ounts of a Choleskyfa
tor [16℄. Our new algorithms require a fast method to 
ompute the 
olumnelimination tree without forming ATA; we give the �rst detailed des
ription ofsu
h a method.All these algorithms run in time almost linear in jAj rather than in timealmost linear in jATAj. Numeri
al experiments 
on�rm that the new algorithmsare eÆ
ient and pra
ti
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olumns of A by a postorder of T (ATA);Compute level(j), the distan
e from j to the root of j's subtree, for 1 � j � n;Compute fi, the 
olumn index of the �rst nonzero in row Ai�, for 1 � i � m;Compute hadj f [j℄, for 1 � j � n;prev f (j) 0, for 1 � j � n;prev nbr(j) 0, for 1 � j � n;

R(j) 1, for 1 � j � n;w(j) 0, for all nonleaves j in T (ATA);w(j) 1, for all leaves j in T (ATA);for 
olumn j  1 to n doif j is not the root of a subtree thenw(parent(j)) w(parent(j))� 1;end iffor u 2 hadj f [j℄ doif fst des
(j) > prev nbr(u) then/* j is a leaf of the row subtree of u */w(j) w(j) + 1;p leaf  prev f (u);if p leaf = 0 then

R(u) 

R(u) + level(j)� level(u);elseq  FIND(p leaf );

R(u) 

R(u) + level(j)� level(q);w(q) w(q)� 1;end ifprev f (u) j;end ifprev nbr(u) j;end forUNION(j;parent(j);end forr
R(j) w(j), for 1 � j � n;for j  1 to n � 1 doif j is not the root of a subtree thenr
R(parent(j)) r
R(parent(j)) + r
R(j);end ifend forFigure 3.2: The 
olumn-oriented algorithm to 
ompute row and 
olumn 
ountsof the upper triangular matrix in orthogonal fa
torization.



18 J. R. GILBERT AND X. S. LI AND E. G. NG AND B. W. PEYTONTable 4.1: Test matri
es.Square Matri
esMatrix n jAj jAj=n jATAj Dis
iplineMemplus 17,758 99,147 5.6 2,552,314 
ir
uit simulationGemat11 4,929 33,185 6.7 78,676 ele
tri
al powerRdist1 4,134 9,408 2.3 487,160 
hemi
al engineeringOrani678 2,529 90,158 35.6 1,858,894 e
onomi
sM
fe 765 24,382 31.8 144,976 astrophysi
sLnsp3937 3,937 25,407 6.5 97,736 
uid 
owLns3937 3,937 25,407 6.5 97,736 
uid 
owSherman5 3,312 20,793 6.3 86,454 oil reservoir modelingJpwh991 991 6,027 6.1 24,150 
ir
uit physi
sSherman3 5,005 20,033 4.0 54,904 oil reservoir modelingOrsreg1 2,205 14,133 6.4 43,994 oil reservoir simulationSaylr4 3,564 22,316 6.3 70,456 oil reservoir modelingShyy161 76,480 329,762 4.3 808,656 
uid 
owGoodwin 7,320 324,772 44.4 1,768,680 
uid me
hani
sVenkat01 62,424 1,717,792 27.5 4,557,544 
ow simulationIna

ura 16,146 1,015,156 62.9 3,372,106 CFDAf23560 23,560 460,598 19.6 2,414,716 airfoil simulationRaefsky3 21,200 1,488,768 70.2 4,032,176 
uid turbulen
eEx11 16,614 1,096,948 66.0 4,501,260 
uid 
owWang3 26,064 177,168 6.8 588,958 devi
e simulationRaefsky4 19,779 1,316,789 66.6 5,281,844 bu
kling problemAv41092 41,092 1,683,902 41.0 26,961,314 2D PDERe
tangular Matri
esMatrix m n jAj jATAj Dis
iplineCran 2,331 1,625 74,902 2,327,086 term-do
umentMed 5,504 1,063 51,389 765,978 term-do
umentNpl 11,529 4,322 225,634 1,548,536 term-do
umentNewsgroup 104,260 19,709 1,573,790 167,754,124 term-do
umentDfl001 12,230 6,071 35,632 76,196 optimizationSto
for3 23,541 16,675 72,721 206,720 optimizationOsa-60 243,209 10,243 849,356 510,138 optimization
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onds of several algorithms for square matri
eson the IBM RS/6000-590: forming ATA, 
omputing the etree, 
omputing theCholesky 
ounts of ATA, 
omputing the QR 
ounts, and sparse LU fa
torization.Based on ATA Based on AForm Compute Cholesky Compute QR LUMatrix ATA etree 
ounts etree 
ounts fa
torsMemplus 1.143 0.599 0.519 0.069 0.106 0.57Gemat11 0.091 0.021 0.021 0.023 0.030 0.27Rdist1 0.887 0.114 0.097 0.059 0.054 0.96Orani678 4.948 0.432 0.367 0.057 0.073 1.11M
fe 0.243 0.041 0.029 0.015 0.015 0.24Lnsp3937 0.073 0.025 0.025 0.019 0.026 1.50Lns3937 0.073 0.025 0.025 0.018 0.026 1.65Sherman5 0.085 0.021 0.020 0.014 0.019 0.82Jpwh991 0.016 0.006 0.006 0.004 0.006 0.52Sherman3 0.048 0.015 0.017 0.014 0.024 1.37Orsreg1 0.035 0.011 0.012 0.010 0.014 1.21Saylr4 0.055 0.021 0.019 0.017 0.023 2.18Shyy161 0.699 0.233 0.270 0.241 0.413 25.42Goodwin 4.578 0.426 0.348 0.203 0.165 12.55Venkat01 11.853 1.083 0.940 1.077 0.926 42.99Ina

ura 15.220 0.784 0.677 0.628 0.506 67.73Af23560 2.519 0.573 0.495 0.306 0.344 75.91Raefsky3 24.310 0.937 0.800 0.924 0.698 107.60Ex11 17.729 1.045 0.885 0.699 0.557 247.05Wang3 0.461 0.153 0.144 0.122 0.174 116.58Raefsky4 21.319 1.238 1.040 0.838 0.656 263.13Av41092 271.354 7.244 5.356 1.051 1.188 786.94Table 4.3: Running time in se
onds of several algorithms for re
tangular matri
eson the IBM RS/6000-590: forming ATA, 
omputing the etree, 
omputing theCholesky 
ounts of ATA, 
omputing the QR 
ounts.Based on ATA Based on AForm Compute Cholesky Compute QRMatrix ATA etree 
ounts etree 
ountsCran 3.099 0.535 0.453 0.046 0.054Med 0.495 0.177 0.152 0.030 0.038Npl 1.626 0.38 0.462 0.149 0.200Newsgroup 206.348 75.731 80.649 3.743 4.982Dfl001 0.064 0.022 0.030 0.023 0.047Sto
for3 0.184 0.058 0.086 0.051 0.093Osa-60 1.516 0.125 0.173 0.492 0.839


